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Spherical liquid and gas layers are often encountered in systems which require heat re- 
moval, and this is the reason for the rather intensive and multi-faceted study of the nature 
of the heat exchange taking place in them. In particular, there have been a number of ex- 
perimental studieS [1-3] in which the working media considered were water, air, and liquid 
silicones (0.7 ~ Pr < 4148). These studies have revealed the general characteristics of 
the heat exchange and the temperature profiles for different ratios of sphere diameters and 
made possible a classification of flow regimes. An analytic solution of the problem at low 
Rayleigh numbers is given in [4]. For one group of parameters (r2/rl = 2, Gr = 103 , Pr = 0.7) 
the distribution of local heat fluxes at the boundaries of the region was given. A descrip- 
tion of the method and the results of the numerical investigation of natural convection in 
spherical gas layers were given in [5]. The investigation was carried out on the basis of a 
complete system of differential equations written in the variables V', p', p', and T' and tak- 
ing account of compressibility, dissipative processes, and the variation of the physical prop- 
erties of the gas as functions of temperature. A comparison of the experimental and numerical 
results indicated good qualitative agreement. However, owing to the complexity of the mathe- 
matical model and to certain difficulties caused by the spherical shape, the calculation of 
one variant of the problem requires a large amount of machine time. Therefore the main at- 
tention in [5] was concentrated on determining how the convective process is affected by the 
dimensionless parameters characteristic of the compressible medium. 

In the present study we investigate how the Prandtl number and the geometry of the re- 
gion influence the development of the flow and the heat transfer in spherical layers filled 
with a liquid or a gas. To shorten the calculation time, we construct the numerical model 
on the basis of a system of equations for an incompressible liquid in the Boussinesq approxi- 
mation. 

We consider the flow and the heat transfer in a layer with impenetrable boundaries which 
is formed by two concentric spheres, whose outer surface (R' = R~) and inner surface (R' = R~) 
are maintained at constant temperatures of T' and TI respectively. 

In vector form the system of equations describing the nonstationary convection has the 
form 

DV' t 
D---T = - -  - 7  grad p '  + ~V2V ̀  + g '~ '  ( T '  - -  T1); (1 )  

r ' D T "  , 2 , 
p cp--ff- i- = )~ V T-; (2 )  

div V '  0,, (3 )  

where p' is the deviation of the pressure from the statistical pressure p~ = p'(T~); (T' -- 
T~) is the difference between the local temperature and some characteristic temperature; the 
rest of the symbols are those in common use. 

Experimental investigations [1--3] have shown that the convective flow remains axially 
symmetric and laminar up to Grashof numbers not exceeding 107 . The axis of symmetry is a 
vertical axis passing through the center of the concentric spheres. Axial symmetry is also 
assumed in the construction of the numerical model. 

For our further investigations we use a spherical system of coordinates; we assume that 
its polar axis coincides with the axis of symmetry and that the angular coordinate @ is mea- 
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sured from the downward direction of the vertical (~ = -~/2). By virtue of the symmetry, we 
have v~ = 3/3~= 0. 

Introducing the stream function by means of the relations 

Vr--r~cosOOO, V O =  r ~ s O O r  (4) 

and performing the transformations customary for two-dimensional problems in hydrodynamics, 
we write the system of equations (1)-(3) in the following dimensionless form: 

O~= 2 ~  sinO + -7---/0] ~ O0 ~'7~--0] O---t r 2 cos 2 0 r 2 cos 0 

--O. r'roosO(oosO~ O  .ooo  Or "7 0"0 -t- Pr ~,or2 + r-T OO--T-t---~-~-@}; 

aT) _ _  + _ _ _ _  + _ .  

Ot - -  r ~ cos O \ OO Or Or ~ -t- Or ~ r 2 O02 r Or r z O0' 

fl)= 02~+ i 02~+ tg00~ 
0 7  7 ao - '~  - 7  "~~ 

(5) 

(6) 

(7) 

Here v , v~, v~ are the projections of the velocity vector V' onto the axes r, e ~" Gr = 
! ! ~ V3-- f2 ~ g,~ &T 6 /v Is the Grashof number; Pr = v'/a' is the Prandtl number; T = (T' T~) T' - /(~-- 

TI) is the temperature. 

When we pass to dimensionless variables, we take as the scales of length, velocity, time, 
and temperature the quanties 8' = R' ' '/8' = T' ' 2 -- RI, a , ~'=/a', AT' = -- TI, respectively, where 
a' is the thermal diffusivity. 

The solution of the problem is carried out in the region rl ~ r ~ r2, --~/2 ~ 8 ~ ~/2 
on the basis of Eqs. (5)-(7) with the boundary conditions 

T I = 0  for r = q ,  T ~ = t  for r = r  2/  
= O, ~ : 0 2 ~ / 8 r  2 for r = h ~ r 2 )  -- n/2 ~ 0 ~ n/2 ,  

: o ~ DT/O0 = 0 for 0 = _____~/2, q < r < r~. 

As t h e  i n i t i a l  c o n d i t i o n s ,  we s p e c i f y  t h e  f i e l d s  of  t h e  s t r e a m  f u n c t i o n ,  t h e  v o r t i c i t y ,  
and  t h e  t e m p e r a t u r e  c o r r e s p o n d i n g  to  t h e  s t a t e  o f  h y d r o s t a t i c  e q u i l i b r i u m  o f  t h e  l i q u i d :  

t = 0,~ ~(r,  O) = ~(r, O) = 0,. T(r,. O) = (r ~ r , ) rJr  

for rl ~ r ~ r2, -~/2 ~ 0 ~ 7/2. 

The motion in the layer starts from the equilibrium state with the sudden application 
of gravitational-field forces. The stationary solution of the system of equations (5)-(7) 
with the given initial and boundary conditions is obtained by the method of bringing the 
initial perturbations to a stop as t=~oo. 

One of the important characteristics of convective heat exchange that is of interest for 
technical applications is the convection coefficient econv which takes account of the fact 
that there is more heat exchange when there is convection than in the case of pure conduction. 
In the numerical calculations the convection coefficient is defined as 

�9 F1 

where  <Nu> i s  t h e  a v e r a g e  v a l u e  o f  t h e  N u s s e l t  n u m b e r  on t h e  i n n e r  s u r f a c e  ( i  = 1) a nd  t h e  
o u t e r  s u r f a c e  ( i  = 2 ) ,  e q u a l  t o  a/~ 

t ~ (OT) cosOdO. <NuO = ~-- ~ i 
-~/2 

From Eqs. (5)-(7) with the given initial and boundary conditions it follows that their 
solution depends on the parameters Gr and Pr and a geometric factor for the region, which in 
the present problem is taken to be the relative width of the gap, 5/ri, or the ratio of the 
radii, r=/rl = 6/ri -- i. One result of the numerical solution is the determination of the 
form of the relation econv = r 6/r~), where Ra= GrPr is the Rayleigh number. 
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The system (5)-(7) was solved numerically by the net-point method. The finite-difference 
scheme was obtained by the balance method, which we had used earlier in calculating the con- 
vection of a compressible gas with variable physical properties and described in detail in 
[5]. The solution of the difference analogs of Eqs. (5) and (6) is found by an explicit 
scheme using Seidel's method, and the solution of the Poisson equation (7) is found by an 
implicit scheme of variable directions. The procedure for solving the difference problem 
may be found in detail in [6]. 

The formulation of the difference boundary conditions for all the desired functions, ex- 
cept for ~ on r = rl, r2 and for T on the axis of symmetry, is obvious. For the vorticity 
and the temperature, we established boundary conditions of second-order accuracy [7] on the 
aforementioned boundaries; at time t = nat these conditions have the form 

n _ V~ 
n 8 ~ j , i + 1  J , ~ + 2  

2Ar2 ~r  r = rl, - -  ~/2 < 0 < ~/2, 

n 
T j , i = ( i / 3 ) ( 4 T ~ I . i - - T j + 2 , ~ )  ~r  0 = n / 2 ,  r z < r < r 2 ,  

w h e r e  At i s  t h e  t i m e  s t e p ,  i i s  t h e  r a d i u s  number  o f  t h e  n o d e ,  and  j i s  i t s  a n g l e  n u m b e r .  

I n  t h e  s t a t i o n a r y  r e g i m e ,  f rom t h e  p r e v i o u s l y  f o u n d  f i e l d s  ~,  we d e t e r m i n e d  f rom t h e  
r e l a t i o n s  (4)  t h e  a n g u l a r  c o m p o n e n t  v 9 and  t h e  r a d i a l  c o m p o n e n t  v r o f  t h e  v e l o c i t y .  The 
d e r i v a t i v e s  o c c u r r i n g  i n  (4)  w e r e  a p p r o x i m a t e d  by  c e n t r a l  d i f f e r e n c e s .  

The m a i n  s e r i e s  o f  c a l c u l a t i o n s  was c a r r i e d  o u t  on a 25 • 25 n e t  w i t h  u n i f o r m  s t e p s  i n  
a n g l e  and  r a d i u s ;  t h e  i n f l u e n c e  of t h i s  n e t  on t h e  a c c u r a c y  o f  t h e  s o l u t i o n  was e s t i m a t e d  
by t h e  m e t h o d  o f  [ 5 ] .  

The time step At was chosen on the basis of stability conditions obtained by the Fourier 
method on the basis of the linearized system of equations (5)-(7) in the range of Grashof 
numbers, 103 ~ Gr ~7-I05, and the radius ratios, i.i ~ r2/rl ~ 5, under consideration; 
for Prandtl numbers in the range 0.71 ~ Pr ~ i0, the time step varied between 10 -2 and 10 -3 . 

The results discussed here relate to the stationary regime and mainly to the case T2 > 
TI. The boundary conditions TI > T2 were fixed, as a rule, for convenience of comparison 
of the numerical data with the experimental data, since all the experiments known to the 
authors had been carried out with a higher temperature on the inner sphere. The ratio r2/rl 
was varied by changing the radius of the inner sphere while r2 was kept constant. 

Our analysis of the results of the numerical solution showed that for all the Prandtl 
numbers, radius ratios, and Gr > l0 s under consideration, the principal form of circulation 
flow is stable single-vortex flow. The motion of the liquid takes place along crescent- 
shaped trajectories upward along the heated outer surface and downward along the cooled in- 
ner surface. For both thick and thin layers, if the Rayleigh numbers are small, there are 
slow flows with streamlines symmetric with respect to the middle of the region, r c = 9.5(ri $ 
r2), 0 = 0, and the total amount of heat transferred through the layer remains at the level 

of the pure-conduction regime (the deviation of econv from unity does not exceed 5%). 

As the Rayleigh number increases, the motion in the layer becomes more intensive. The 
removal of heat by the flow leads to a longitudinal temperature gradient. The center of the 
vortex is shifted downward along the angle and moves slightly toward the outer sphere; the 
larger r2/rz is for Ra = const, the more substantial this shift becomes. Thus, when r=/rl = 
i.i (Ra = 104 , Pr = 1.0), the center of the vortex may be regarded with only a small error 
as coinciding with the central point of the region, while for r2/r~ = 5 it is at the point 
ri = r c + 2Ar, 0j =--45 ~ , where Ar is the step of the net along the radius. Simultaneously 
with the vortex shift, there is an increase in the dimensions of the stagnation zone, where 
the Archimedean forces inhibit the motion of the liquid and the heat transfer takes place 
mainly through conduction. Convection begins to play an increasingly important role in the 
total heat transfer for all Prandtl numbers under consideration and any geometry, and there- 
fore for sufficiently large values of Ra (Ra ~ 5"104) regions with a reverse temperature 
gradient will be formed. The angular vortices, which, as in [5], appear for Gr ~ i0~, Pr = 
0.71, 1.4 ~ r2/r1~ 3,0 near the axis of symmetry on the inner sphere (0=+~/2) and the outer sphere 
(0 =--~/2), are not propagated to the entire width of the gap and are small in comparison with the main 
crescent-shaped vortex. Such flows are usually [i] considered single-vortex flows. Typical pic-. 
tures of the streamlines and the isotherms of the above-described flows are given in [5]. Analo- 
gous flow pictures were observed visually in [i] with all the temperature differences AT' 
between the spheres that were investigated there for 1.37 ~ r2/rl ~1.72 (2"104 ~ Gr ~-~ 
3.6"106) and with moderate values of AT' for r2/rl = 2.53; 3.14. 
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Comparison with the data of a later experimental study [3] showed that the design struc- 
ture of the flow for r2/rl = 1.4 (Pr = 0.71) in the Grashof-number range 7"103 ~ Gr ~ 1.2" 
104 does not agree with the flow structure Observed in the experiment. The results of the 
numerical calculations both for T2 > TI and for TI > T2 indicate that there is a stable cres- 
cent-shaped vortex (the angular vortex of [5] for this value of r2/rl appears when Gr = 2" 
104), while the experimental data (TI > T2) indicate that there is a secondary vortex in the 
upper part of the region. This vortex has a direction of rotation opposite to that of the 
main vortex and takes up the entire width of the gap in the radial direction. The authors 
of [3] assume that when there is a uniform two-dimensional flow, such a vortex cannot be 
formed constantly and that the flow pictures they obtained are the result of incomplete de- 
velopment of the flow. At the same time, the absence of such a vortex in the numerical ex- 
periment, both in a stationary regime and during the entire time required to establish the 
stationary state, may be due to the fact that a two-dimensionalaxially symmetric convection 
model was used. 

The influence of the ratio r2/rl on the development of convective flow when Gr > 105 
has been most fully investigated for gases with Pr = 0.71 and 1.0. The picture obtained for 
the streamlines showed that for large values of r2/r~ the flow is not sensitive to the geom- 
etry of the region. As the Rayleigh number increases (10 s < Ra ~ 7"105), the flow remains 
a single-vortex crescent-shaped flow, which does not contradict the experimental data of [i, 

3]. 

As r2/rl decreases, the influence of the geometry becomes more perceptible. When r2/rl = 
2, it manifests itself in a transition from a crescent-shaped vortex to a kidney-shaped one. 
This type of flow is characterized by a distortion of the upper part of the central vortex, 
which is manifested in a shift of the streamlines of the ascending flow along the radius in 
the direction of the outer sphere. For Pr = 0.71 the kidney-shaped vortex appears when Gr = 
2.5"105 (Fig. i). In the experiments of [I, 3] the appearance of this type of flow for air 
was observed in the range 1.54 ~ r2/rl ~ 2.17 when Gr = 2"i0 S. 

In narrow gaps (r2/rl = i.i; 1.4), for Ra > 105 the flow is characterized by a transi- 
tion from one dominant vortex to a multivortex flow. Stable vortices of low intensity (two 
at first) are formed starting from Ra = 0.85"i05 in the central part of the flow region at 
the interface between the counterflowing convection currents. As Ra increases, the number 
of vortices increases, they move further apart, and the flow picture takes on the form seen 
in Fig. 2 (T~ > T2, r2/r~ = 1.4, Pr = 0.71, Gr = 5-103). The direction of rotation of the 
secondary vortices coincides with the direction of rotation of the main vortex, which is ad- 
jacent to the boundaries of the region. The appearance of such vortices caused by the mu- 
tual perturbations of the high-velocity ascending and descending flows was noted in [8] for 
the case of natural convection of air between two coaxial cylinders. In spherical layers 
with r2/rl = 1,.4, Pr = 0.71, and Gr > 2".105 , the authors of [3] observed a nonstationary 
flow characterized by a three-dimensional spiral ~or~ex in the upper part of the region, the 
absence of any clearly marked central vortex, and a periodic crowding to~e~r ~f the ~Zream- 
lines in the direction of the outer sphere in the remaining main part of the reglen, From a 
comparison of the results of the numerical and the physical experiments it follows that the 
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use of the above-described mathematical model to predict the qualitative picture of the flow 
in thin layers must evidently be limited by Gr = 104 . 

Thus, the numerical calculations have shown that the ratio of radii of the spheres, 
r=/rl, influences both the type of circulatory flow appearing in the layer and the magnitude 
of the characteristic quantity Ra beyond which the structure of the flow is reorganized. As 
the value of r2/r~ decreases, the characteristic Rayleigh number also decreases. Any nonuni- 
formity in the flow field arises in the central part of the flow, moving at relatively low 
velocity. 

From the data of [3] it followsthat~for a change from r=/rl = 1.4 to r=/rz = 1.25, which 
is the smallest ratio investigated in that study, the critical Grashof number for air de- 
creases (Gr, = 5"104). In numerical calculations for min r2/r~ = i.i the transition value 
Gr, remains practically in the same region, 105 4 Gr ~ 2.5-I0 s, as for r2/r~ = 1.4, Ap- 
parently this is due to the fact that the longitudinal temperature difference (AT)~, which 
has a substantial effect on the structure of the stationary motion, differs very little when 
r=/rl = i.I from its value when r2/rz = 1.4. The temperature distribution along the center 
line of the layer, --~/2~8~/2 with different value of r2/rl, is shown in Fig. 3, where 
the dashed curve corresponds to the temperature distribution in the heat-conduction regime 
for r=/r~ = 2. It can be seen that for a given value of the Grashof number the longitudinal 
temperature difference is determined by the ratio r2/rz. It has its maximum value when r=/ 
rl = 1.4 and decreases as r=/rz increases. The longitudinal temperature gradient becomes 
stabilized. The secondary vortices (r=/rl = 1.4) produce a wave-shaped variation in the 
temperature profile. 

The influence of the radius ratio on the intensity of tlle flow is reflected in Fig. 4. 
The profiles for the angular velocity component v e are constructed as functions of the radius, 
rl ~ r ~r2, for one value of the angle 8 = 0. From the graph it follows that tile absolute 
velocities of the ascending and descending flows for the smallest ratio r2/rl are practically 
the same, and the hydrodynamic layers are not separated. These effects can be attributed to 
the relatively similar extent of the heated and cold surfaces. As r=/rz increases, the ab- 
solute values of the velocities of the descending and ascending flows decrease. The maximum 
value of v for r=/r~ = i.i is almost three times its value for r=/r~ = 5. The shape of the 
profile also changes. On the cooled surface r = r~ there is formed a narrow jet-shaped de- 
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scending flow, while the ascending flow becomes wider in accordance withthe continuity equa- 
tion. When rl/rl = 5, the maximum velocity in the zone adjacent to r = rl is 3.5 times as 
high in absolute value as the extremum value of the velocity in the wide ascending flow. Thus, 
an increase in r=/rl while Ra remains fixed leads to a decrease in the absolute values of the 
flow velocity, i.e., to a reduction in the intensity of motion. 

The nature and the velocity of the liquid circulation in the wide and narrow layers also 
change the conditions of heat transfer through them. The influence of the relative thickness 
of the layer on the intensity of heat transfer has been investigated in detail for Gr = 104 , 
5"104 , 105 , Pr = 0.7, 1.0, and radius ratios of r=/rl = ~/rz -- 1 = i.i, 1.4, 1.7, 2, 3, 5. 

The results for the convection coefficient are shown in Fig. 5. It can be seen that the 
variation of Sconv as a function of the ratio of radii is not monotonic. The variation of 
r2/rl in the interval i.i ~ r=/rz ~ 2 leads to an intensification of the heat exchange. 
Here we observe a sharp increase in aconv, which becomes more pronounced as the Grashof hum -�9 
ber increases. In the vicinity of r2/rz = 2 the function econv(r2/rz) takes on its maximum 
value. ~en r2/r~ > 2~ the amount of heat removed by the flow gradually decreases. This 
type of variation of the convection coefficient is due to the choice of the range of variation 
of the ratio of radii and the behavior of Sconv as r2/rl tends to its limiting values. 

As rJrz=~oo (rz~0) the coefficient econv will tend to its value in the case of heat 
transfer under conditions of a spherical cavity. However, if the temperature of the spheri- 
cal surface is constant, then after the passage of some time interval (theoretically infinite~ 
the liquid takes on the temperature of the surface and the heat transfer in the cavity will 
cease. In the other limiting case, when the values of r=/rz are close Go unity, we can ex- 
pect that in the investigated range of Rayleigh numbers the heat transfer will take place 
only by conduction. These conclusions are confirmed by the data of Burelko and Shtessel' 
[9], who within the framework of similarity theory obtained a heat-transfer law for the case 
of free convection in cylindrical and spherical layers. The existence of a maximinn of the 
function ~conv = ~conv(r2/r~) is attributed by them to the competing influences of the Rayleigh 
number and the curvature of the region on the heat transfer. 

The nonmonotonic nature of the variation Of Cconv as a function of the relative thick- 
ness of the layer, ~/rz, must he taken into consideration when we select the optimal ratios 
of radii for minimizing the heat losses through the layers in structural elements. 

The temperature stratification in the region leads to a nonuniformity in the distribu- 
tion of the local heat fluxes along its boundaries, which increases with increasing r=/rz. 
Such a picture is qualitatively analogous to the distribution of heat �9 fluxes when Gr increases 
in the case of "r2/rz = const [5]. 

The results of the numerical solutions in the form of a function econv(Ra) for Pr = 0.7 
and 1.0 and different ratios r2/rz are shown in Fig. 6. The sequence in which the curves 
are arranged is the same in this case as in the case of natural convection of a gas in hori- 
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TABLE 1 

I I I I Range ~ parameters' Source e a b Pr = O.ql 

[2l I 0,i62 I 0,252 I 0,059 I 2'10~Gr~i,5-i0~ 
i,25 ~ r2/r 1 ~ 3,t4 

Numerical method 0 , t 5 8 1 0 , 2 6 6  0'0571104 ~Gr ~ 7 ' t 0 s t , t  ~ r2/r I ~% 5 

zontal cylindrical layers [9]. For each r2/rl we can determine from the graphs the value of 
the Rayleigh number corresponding to the transition from the conduction regime to a regime of 
fully developed ~onvection. The values of Ra for this regime lie above the dashed curve. It 
can be seen from Fig. 6 that in'narrow gaps (r2/rl = I.i and 1.4) the regime of fully de- 
veloped convection comes at higher values of the Rayleigh number than in wide gaps, i.e., a 
decrease in r=/rl delays the development of the process. At the same time, the transition 
from one type of flow to the other, as noted above, takes place at lower Rayleigh numbers 
in the case of thin layers (Ra ~ l0 s , r2/r~ = 1.4). From Figs. 5 and 6 it follows that for 
a given value of r2/rl the convection coefficient increases with increasing Ra. 

The nature of the curves in Fig. 6 enables us to generalize the data for a fully de- 
veloped convection regime in the forn of the following power function: 

ecofiv = c Ra a (6/rl)b. (8) 
Using the method of least squares, we obtained the values of the constants appearing 

in this formula. They are shown in Table 1 together with the empirical constants from [2]. 
The exponent of r2/r~ practically coincides with the experimental value, but the dependence 
of the Rayleigh number is stronger than prediced by the experiment. The convection coef- 
ficients calculated from the experimental formula are 13.7% smaller (in modulus) on the aver- 
age than those obtained by machine calculation. The reason for this, in addition to the dif- 
ference in the range of parameters (see Table i) may be that the experimental formula was ob- 
tained for the case of heating from within. 

The mean deviation of the calculated values of the convection coefficient from those 
obtained by formula (8) is 11%. The maximum deviation does not exceed 24.5%, corresponding 
to r2/rl = 5, and is apparently caused by the nonmonotonic variation of the convection coef- i 
ficient as a function of r2/rl. 

The mathematical processing of the data over the entire investigated range of param- 
eters Pr and ~/r~ in a regime of fully developed convection enabled us to obtain the crite- 
rion equation 

eco ~ 0A66 Ha ~ Pr~176176176 

Since the exponent of the Prandtl number is small, we can assume with some error that the 
criteria Gr and Pr have equal influence on the intensity of the heat transfer. An analogous 
result was obtained in [6] for horizontal annular channels. 

Thus, our numerical investigations enabled us to make clear the nonmonotonic nature of 
the variation of the convection coefficient as a function of the relative width of the gap 
and to find the form of the criterion equation of similarity in the range of parameters under 
consideration. We established that although the relative width of the gap does influence the 
intensity of the heat transfer, this influence is slight and may be disregarded in practical 
calculations. 
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